缅甸华纳开户老虎机 释放开源评估平台的潜力,制作超声发射子系统的原型

2023-11-27 09:34:53 来源:EETOP

摘要

本文讨论了开发先进哪个足彩app可以买大小球所面临的挑战。利用现有评估平台既可降低系统开发成本,也可缩短超声系统发射模块的特性测试时间。本文介绍了如何同步多个通道的分步过程,这是波束控制的一个关键概念,也是医学成像所特有的概念。

引言

在任何新技术开发过程中,在将新型号或下一代哪个足彩app可以买大小球商业化之前,制造商都会经历硬件开发和测试以及哪个足彩app可以买大小球和验证等阶段。开发高通道数成像超声子系统预计需要多年的努力。此外,在对系统考虑因素知之甚少的情况下贸然开始波束引导或发射子系统的硬件原型制作,可能会导致硬件原型需要多次修改,带来高昂的成本。现在,开发人员可以使用一个完整系统(原型板和开源软件)来模拟哪个足彩app可以买大小球子系统的操作,从而降低哪个足彩app可以买大小球制造商的开发成本并加快上市时间。

基于 Arduino TxDAC® 评估板和开源 Mbed 软件

image.png

1. 支持 Mbed AD9106 评估平台。

AD9106-ARDZ-EBZ 评估平台兼容基于 Arm® 且支持 Mbed 的电路板(如 SDP-K1 ),并且可以连接到 Arduino Uno 接头。该评估设置只能由 USB 供电,无需高频波形发生器来提供时钟输入。该评估板默认使用板载 156.25 MHz 晶振作为时钟源,但提供了外部时钟选项。 DAC 输出可以通过变压器耦合,或使用板载放大器进行评估,这是唯一需要 7 VDC 12 VDC 30 W AC-DC 适配器的情况。参见图 1

除硬件之外,评估板网页上还提供了示例开源代码,可用作开发目标应用固件的起点。评估板和示例源代码可以根据需要加以定制,以便与其他 Mbed 平台配合使用。新的评估系统可以轻松集成到现有系统中,因而简化了原型制作。

image.png

2.AD9106 功能框图。

评估板安装有四通道、低功耗、 12 位、 180 MSPS TxDAC AD9106 和波形发生器。该 DAC 的高采样速率非常适合 1 MHz 40 MHz 范围内的超声工作频率,外部成像设备通常使用 1 MHz 15 MHz 的频率,而静脉内心血管设备使用高达 40 MHz 的频率。此外, AD9106 高度集成,具有用于生成复杂波形的片内模式存储器,以及使用 24 位调谐字、支持 10.8 Hz/LSB 频率分辨率的直接数字频率合成器 (DDS) 。该器件也是高度可编程的,四个 DAC 通道中的每个通道的模式周期、启动延迟、增益和偏移都可以独立改变。此外,它具有低功耗特性(在 3.3 V 4 mA 输出和 180 MSPS 下,每通道功耗 78.8 mW ,总计 315.25 mW ),这是哪个足彩app可以买大小球等大型多通道系统的一个重要考虑因素

提高哪个足彩app可以买大小球的精度和图像分辨率

image.png

3. 医疗超声前端信号链。

推车式超声系统在图像质量或分辨率方面优于手持设备,主要是因为通道数量差异巨大。然而,通道数量可能因制造商而异。成本和功耗是哪个足彩app可以买大小球等大型系统的重要考虑因素,因此业界使用了一些技术来尽量减小这两个因素。在图 3 所示的典型超声信号链中,如果我们考虑到每个发射器路径( DAC + 高压放大器,驱动探头尖端处换能器阵列中的一个元件)都对应一个接收器路径(集成模拟前端),那么通道数的确定相对简单。根据这个假设,我们可以说超声系统中的通道数介于 16 256 之间。高端系统(其中大部分推车式)中的通道数为 64 或更多。对于便携式、中低端系统, 16 64 个通道更为常见。

image.png

4. 波束引导和聚焦。

在超声系统的发射器路径中,声能或声波束扫过身体。声波由探头前端处的压电换能器元件从电信号转换而来。如图 4 所示,每个电信号或发射器信号的相位和幅度均经过编程,引导入射能量束沿着一条线进入身体。从器官组织反射的声波被换能器元件再次转换为电能。目标的位置或距离将根据换能器阵列中元件之间的时间延迟显示在屏幕上。因此,为了显示人体内部的准确图像,同步或者说能够控制发射器信号之间的延迟至关重要。

芯片同步的要求

为了成功同步多个 DDS DAC (如 AD9106 ),必须控制差分时钟输入( CLKP CLKN )和 TRIGGER 引脚的下降沿。

image.png

5. 建议时钟分配布局(左)和次优布局(右)。

为了满足同步的第一个要求, PCB 布局应采用谨慎的时钟分配做法。参见图 5 。这将充分减少 REF CLK 边沿之间的相位差(它会导致 DDS 输出处出现成比例的相位差)。

模式生成由 AD9106 TRIGGER 引脚的下降沿触发 因此同步的下一个要求是确保 TRIGGER 边沿一致。图 5 中的布局技术也可应用于从控制器的数字输出布线到每个 AD9106 器件的 TRIGGER PCB 走线。

利用 AD9106-ARDZ-EBZ 评估多芯片同步

为了评估多个 AD9106 DAC 的同步,可以使用两个 AD9106 评估板和一个 SDP-K1 控制器板。

image.png

6. 多个 AD9106 器件同步的系统示意图(简化示意图,未显示所有连接)。

材料

两个 AD9106-ARDZ-EBZ

用于电路板与 PC 连接的 USB 电缆

SDP-K1

一个 12 V 壁式 电源适配器

信号发生器

可变长度 SMA 端接电缆

一个 SMA 端接 T 型分路器

母对母 Arduino 连接器导线

缅甸华纳开户老虎机

连接三个电路板之前,配置两个 AD9106-ARDZ-EBZ 板,使 DAC 输出连接到板载放大器,并且 DAC 时钟由连接到 J10 的外部源提供。关于 JP1 JP2 的正确连接,请参阅 Eval-AD9106 Wiki 用户指南 中的图 14b 。另外,请设置其中一个 AD9106-ARDZ-EBZ 板,使板上器件的 CSB 引脚连接到交替 GPIO 引脚(安装 R39 而不是 R38 )。确保 SDP-K1 VIO_ADJUST 设置为 3.3 V

然后将高频波形发生器的输出连接到分离式 SMA 端接 T 形分路器,它可以连接不同长度的 SMA 端接同轴电缆。

image.png

7. 为实现同步而建议采用的时钟输入和 TRIGGER 引脚连接。

接下来应设置图 7 所示每个板的时钟输入和 TRIGGER 引脚的连接,然后设置表 1 中的其余连接。将板 1 安装到 SDP-K1 Arduino Uno 端口,然后将板 2 放置在与板 1 180° 的位置,以使两个板的 TRIGGER 引脚并排放置。这是 TRIG2 SDP-K1 数字输出的最短连接,由此 TRIG1 TRIG2 路径大致相等。

image.png

8. 实际设置。

应用了所有连接的实际设置如图 8 所示。表 1 总结了板对板连接。

1.SDP-K1 和两个 AD9106-ARDZ-EBZ 板的板对板连接

SDP-K1 Arduino Uno Connectors

SDP-K1   Arduino Uno 连接器

Connected Nets   on AD9106-ARDZ-EBZ

AD9106-ARDZ-EBZ 上的相连网络

Pin No.

引脚编号

Pin Functions

引脚功能

Board 1

1

Board 2

2

P2.1

P2.1

NC

NC



P2.2

P2.2

IO_PWR_SUPPLY

IO_PWR_SUPPLY

IOREF

IOREF

IOREF

IOREF

P2.3

P2.3

M AIN_RESET

MAIN_RESET

RESET

RESET

RESET

RESET

P2.4

P2.4

SDRAM_&_ARDUINO_ PWR_SUPPLY (3.3 V)

SDRAM_&_ARDUINO_   PWR_SUPPLY (3.3 V)

3.3 V

3.3 V

3.3 V

3.3 V

P2.5

P2.5

+5V_CON

+5V_CON

5 V

5 V

5 V

5 V

P2.6

P2.6

GND

GND

GND

GND

GND

GND

P2.7

P2.7

GND

GND

GND

GND

GND

GND

P5.1

P5.1

ARDUINO_GPIOO/RX

ARDUINO_GPIOO/RX

VIN

VIN

VIN

VIN

P5.2

P5.2

TX + 1

TX + 1



P5.3

P5.3

GPIO2

GPIO2

EN_CVDDX

EN_CVDDX

EN_CVDDX

EN_CVDDX

P5.4

P5.4

GPIO3/PWM

GPIO3/PWM



P5.5

P5.5

GPIO4

GPIO4

SHDN_N_LT3472

SHDN_N_LT3472

SHDN_N_LT3472

SHDN_N_LT3472

P5.6

P5.6

GPIOS/PWM

GPIOS/PWM



P5.7

P5.7

GPIO6/PWM

GPIO6/PWM



P5.8

P5.8

GPIO7

GPIO7

TRIGGERB

TRIGGERB

TRIGGERB

TRIGGERB

P4.1

P4.1

GPIO8

GPIO8

RESETB

RESETB

RESETB

RESETB

P4.2

P4.2

GPIO9/PWM

GPIO9/PWM


SPI_CSB_ALT

SPI_CSB_ALT

P4.3

P4.3

GP1010/PWM/CS

GP1010/PWM/CS

SPI_CSB_DFLT

SPI_CSB_DFLT


P4.4

P4.4

GPIO11/PWM/MOSI

GPIO11/PWM/MOSI

STD_SPI_MOSI

STD_SPI_MOSI

STD_SPI_MOSI

STD_SPI_MOSI

P4.5

P4.5

GPIO12/MISO

GPIO12/MISO

STD_SPI_MISO

STD_SPI_MISO

STD_SPI_MISO

STD_SPI_MISO

P4.6

P4.6

GPIO13/SCK

GPIO13/SCK

STD_SPI_SCK

STD_SPI_SCK

STD_SPI_SCK

STD_SPI_SCK

P4.7

P4.7

GND

GND

GND

GND

GND

GND

P4.8

P4.8

AREF

AREF



P4.9

P4.9

SDA

SDA



P4.10

P4.10

SCL

SCL



软件

我们提供了在 Mbed 开源软件上开发的示例源代码。对这些源代码的详细说明参见 wiki 页面 ,开发者稍加修改即可通过 SPI 对两个评估板上的每个器件进行独立编程。寄存器值以及代码的其他部分可以轻松定制,具体而言是示例 3 中的寄存器值( DDS 生成的正弦波,具有不同的启动延迟和数字增益设置。修改代码后,使用 Mbed 在线编译器编译程序。然后将生成的二进制文件拖放到 SDP-K1 驱动器中。同样的过程也适用于其他应用。

说明

如图 6 的简化图所示,器件间的输出同步是通过测量多个器件的同一 DAC 输出通道(即通道 1 )之间的延迟来实现的。相对于 TRIG1 (控制器板到板 1 )改变 TRIG2 (控制器板到板 2 )的连接器长度,以及相对于时钟 1 (时钟发生器到板 1 )改变时钟 2 (时钟发生器到板 2 )的连接器长度,这两种情况对同步的影响可以使用示波器进行观察。

结果

9 记录了改变触发连接器长度时的测量结果,而图 10 记录了改变时钟连接器长度时的测量结果。

image.png

9. 不同 TRIG2 连接器长度下板 1 和板 2 OUT 1 之间的延迟。

如果 TRIGGER 引脚所连接的数字输出具有与 STM32F469NI SDP-K1 上的微控制器 类似的驱动特性 那么 TRIGGER 走线容差只要在 5 英寸以内 就能维持器件间同步。

image.png

10. 不同时钟 2 连接器长度下板 1 和板 2 OUT 1 之间的延迟。

匹配的时钟输入走线将导致最短的器件到器件的输出延迟,但根据特定系统中可容忍的延迟,可以相应地调整时钟走线长度容差。

结语

在哪个足彩app可以买大小球制造中,利用 AD9106 评估平台提供的设计灵活性和定制优势可以缩短开发流程和上市时间。无需设计新的发射子系统原型即可评估多个发射 DAC (如 AD9106 )的同步。通过使用两个 AD9106-ARDZ-EBZ 板、一个 SDP-K1 控制器板并对示例 Mbed 代码进行少量修改,就能实现对同步的评估。

  1. EETOP 官方微信

  2. 创芯大讲堂 在线教育

  3. 创芯老字号 半导体快讯

缅甸华纳开户体育真人

缅甸华纳开户官方入口

  • 最新资讯
  • 最热资讯
@2003-2023 EETOP

京ICP备10050787号 京公网安备:11010502037710